SL Paper 2

The set of all integer s from 0 to 99 inclusive is denoted by S. The binary operations * and o are defined on S by

 $a st b = [a+b+20] (ext{mod 100})$ $a \circ b = [a+b-20] (ext{mod 100}).$

The equivalence relation R is defined by $aRb \Leftrightarrow \left(\sin \frac{\pi a}{5} = \sin \frac{\pi b}{5}\right)$.

a.	Find the identity element of <i>S</i> with respect to *.	[3]
b.	Show that every element of S has an inverse with respect to *.	[2]
c.	State which elements of S are self-inverse with respect to *.	[2]
d.	Prove that the operation \circ is not distributive over $*$.	[5]
e.	Determine the equivalence classes into which <i>R</i> partitions <i>S</i> , giving the first four elements of each class.	[5]
f.	Find two elements in the same equivalence class which are inverses of each other with respect to *.	[2]

Consider the set $J=\left\{a+b\sqrt{2}:a,\;b\in\mathbb{Z}
ight\}$ under the binary operation multiplication.

Consider $a+b\sqrt{2}\in G$, where $\gcd(a,\ b)=1$,

a.	Sho	w that J is closed.	[2]			
b.	b. State the identity in J .					
c.	Sho	w that	[5]			
	(i)	$1-\sqrt{2}$ has an inverse in $J;$				
	(ii)	$2+4\sqrt{2}$ has no inverse in $J.$				
d.	Sho	w that the subset, G , of elements of J which have inverses, forms a group of infinite order.	[7]			
e.	(i)	Find the inverse of $a + b\sqrt{2}$.	[4]			
	(ii)	Hence show that a^2-2b^2 divides exactly into a and b .				

(iii) Deduce that $a^2-2b^2=\pm 1.$

- a. (i) Draw the Cayley table for the set $S = \{0, 1, 2, 3, 4, 5\}$ under addition modulo six $(+_6)$ and hence show that $\{S, +_6\}$ is a group. [11]
 - (ii) Show that the group is cyclic and write down its generators.
 - (iii) Find the subgroup of $\{S, +_6\}$ that contains exactly three elements.
- b. Prove that a cyclic group with exactly one generator cannot have more than two elements. [4]
- c. H is a group and the function $\Phi : H \to H$ is defined by $\Phi(a) = a^{-1}$, where a^{-1} is the inverse of a under the group operation. Show that [9] Φ is an isomorphism **if and only if** H is Abelian.

The function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is defined by $\mathbf{X} \mapsto \mathbf{A}\mathbf{X}$, where $\mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$ and $\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a, b, c, d are all non-zero.

Consider the group $\{S,+_m\}$ where $S=\{0,1,2\ldots m-1\}$, $m\in\mathbb{N}$, $m\geq 3$ and $+_m$ denotes addition modulo m .

.aShow that f is a bijection if A is non-singular. [7]						
A.bSuppose now that A is singular. [5]						
(i) Write down the relationship between a , b , c , d .						
(ii) Deduce that the second row of \boldsymbol{A} is a multiple of the first row of \boldsymbol{A} .						
(iii) Hence show that f is not a bijection.						
B.aShow that $\{S, +_m\}$ is cyclic for all m .						
B.bGiven that m is prime,						
(i) explain why all elements except the identity are generators of $\{S, +_m\}$;						
(ii) find the inverse of x , where x is any element of $\{S, +_m\}$ apart from the identity;						

(iii) determine the number of sets of two distinct elements where each element is the inverse of the other.

B.cSuppose now that m = ab where a, b are unequal prime numbers. Show that $\{S, +_m\}$ has two proper subgroups and identify them. [3]

The binary operator * is defined for a, $b \in \mathbb{R}$ by a * b = a + b - ab.

- a. (i) Show that * is associative.
 - (ii) Find the identity element.

(iii) Find the inverse of $a \in \mathbb{R}$, showing that the inverse exists for all values of a except one value which should be identified.

(iv) Solve the equation x * x = 1.

b. The domain of * is now reduced to $S = \{0, 2, 3, 4, 5, 6\}$ and the arithmetic is carried out modulo 7.

(i) Copy and complete the following Cayley table for $\{S, *\}$.

[17]

[15]

*	0	2	3	4	5	6
0	0	2	3	4	5	6
2	2	0	6	5	4	3
3	3					
4	4					
5	5					
6	6					

- (ii) Show that $\{S, *\}$ is a group.
- (iii) Determine the order of each element in S and state, with a reason, whether or not $\{S, *\}$ is cyclic.
- (iv) Determine all the proper subgroups of $\{S, *\}$ and explain how your results illustrate Lagrange's theorem.
- (v) Solve the equation 2 * x * x = 5.

The set S consists of real numbers r of the form $r=a+b\sqrt{2}$, where $a,b\in\mathbb{Z}$.

The relation R is defined on S by r_1Rr_2 if and only if $a_1 \equiv a_2 \pmod{2}$ and $b_1 \equiv b_2 \pmod{3}$, where $r_1 = a_1 + b_1\sqrt{2}$ and $r_2 = a_2 + b_2\sqrt{2}$.

a.	Show that R is an equivalence relation. [7]					
b.	Show, by giving a counter-example, that the statement $r_1 R r_2 \Rightarrow r_1^2 R r_2^2$ is false. [3					
c.	Determine	[3]				
	(i) the equivalence class E containing $1 + \sqrt{2}$;					
	(ii) the equivalence class F containing $1 - \sqrt{2}$.					
d.	Show that	[4]				
	$({\rm i}) (1+\sqrt{2})^3 \in F;$					
	(ii) $(1+\sqrt{2})^6 \in E$.					
e.	Determine whether the set E forms a group under	[4]				
	(i) the operation of addition;					
	(ii) the operation of multiplication.					

The set $S_n = \{1, 2, 3, \ldots, n-2, n-1\}$, where n is a prime number greater than 2, and \times_n denotes multiplication modulo n.

a.i. Show that there are no elements $a, \; b \in S_n$ such that $a imes_n b = 0.$	[2]
a.ii.Show that, for $a, \ b, \ c \in S_n, \ a imes_n b = a imes_n c \Rightarrow b = c.$	[2]
b. Show that $G_n=\{S_n,\ imes_n\}$ is a group. You may assume that $ imes_n$ is associative.	[4]

c.i. Show that the order of the element $(n-1)$ is 2.	[1]
c.ii.Show that the inverse of the element 2 is $\frac{1}{2}(n+1)$.	[2]
c.iiiExplain why the inverse of the element 3 is $rac{1}{3}(n+1)$ for some values of n but not for other values of n .	[2]
c.ivDetermine the inverse of the element 3 in G_{11} .	[1]
c.v.Determine the inverse of the element 3 in G_{31} .	[2]

[9]

[7]

[8]

The set of all permutations of the list of the integers $1, 2, 3 \dots n$ is a group, S_n , under the operation of composition of permutations.

Each element of S_4 can be represented by a 4×4 matrix. For example, the cycle $(1\ 2\ 3\ 4)$ is represented by the matrix

$\int 0$	1	0	0 \		(1)	
0	0	1	0	acting on the column vector	2	
0	0	0	1	acting on the column vector	3	
\backslash_1	0	0	0/		$\left(4 \right)$	

- Show that the order of S_n is n!; a. (i)
 - List the 6 elements of S_3 in cycle form; (ii)
 - (iii) Show that S_3 is not Abelian;
 - Deduce that S_n is not Abelian for $n \ge 3$. (iv)
- Write down the matrices M_1 , M_2 representing the permutations (1 2), (2 3), respectively; b. (i)
 - (ii) Find M_1M_2 and state the permutation represented by this matrix;
 - Find $det(\mathbf{M}_1)$, $det(\mathbf{M}_2)$ and deduce the value of $det(\mathbf{M}_1\mathbf{M}_2)$. (iii)
- Use mathematical induction to prove that c. (i)

 $(1\ n)(1\ n\ -1)(1\ n-2)\ldots(1\ 2)=(1\ 2\ 3\ldots n)\ n\in\mathbb{Z}^+,\ n>1.$

Deduce that every permutation can be written as a product of cycles of length 2. (ii)

Let f be a homomorphism of a group G onto a group H.

a.	Show that if e is the identity in G , then $f(e)$ is the identity in H .	[2]
b.	Show that if x is an element of G , then $f(x^{-1}) = (f(x))^{-1}$.	[2]
c.	Show that if G is Abelian, then H must also be Abelian.	[5]
d.	Show that if S is a subgroup of G, then $f(S)$ is a subgroup of H.	[4]

Consider the special case in which $G = \{1, 3, 4, 9, 10, 12\}, H = \{1, 12\}$ and * denotes multiplication modulo 13.

a. The group $\{G, *\}$ has a subgroup $\{H, *\}$. The relation R is defined such that for $x, y \in G, xRy$ if and only if $x^{-1} * y \in H$. Show that R is [8] an equivalence relation.

b.i.Show that 3R10.

b.iiDetermine the three equivalence classes.

S is defined as the set of all 2×2 non-singular matrices. A and B are two elements of the set S.

- a. (i) Show that $(A^T)^{-1} = (A^{-1})^T$. [8]
 - (ii) Show that $(AB)^T = B^T A^T$.
- b. A relation R is defined on S such that A is related to B if and only if there exists an element X of S such that $XAX^T = B$. Show that R is an [8] equivalence relation.

A group has exactly three elements, the identity element e, h and k. Given the operation is denoted by \otimes , show that

- A.a(i) Show that \mathbb{Z}_4 (the set of integers modulo 4) together with the operation $+_4$ (addition modulo 4) form a group G. You may assume [9] associativity.
 - (ii) Show that G is cyclic.

A.bUsing Cayley tables or otherwise, show that G and $H = (\{1, 2, 3, 4\}, \times_5)$ are isomorphic where \times_5 is multiplication modulo 5. State [7] clearly all the possible bijections.

B.bthe group is cyclic.	[3
b. the group is cyclic.	[5

A.aThe relation R_1 is defined for $a, b \in \mathbb{Z}^+$ by aR_1b if and only if $n | (a^2 - b^2)$ where n is a fixed positive integer.

- (i) Show that R_1 is an equivalence relation.
- (ii) Determine the equivalence classes when n = 8.

B. Consider the group $\{G, *\}$ and let H be a subset of G defined by

[11]

[4]

[3]

Show that $\{H, *\}$ is a subgroup of $\{G, *\}$.

B.bThe relation R_2 is defined for $a, b \in \mathbb{Z}^+$ by aR_2b if and only if (4 + |a - b|) is the square of a positive integer. Show that R_2 is not [3] transitive.

The relation R is defined on $\mathbb{R}^+ imes\mathbb{R}^+$ such that $(x_1,y_1)R(x_2,y_2)$ if and only if $rac{x_1}{x_2}=rac{y_2}{y_1}$.

- a. Show that R is an equivalence relation.
- b. Determine the equivalence class containing (x_1, y_1) and interpret it geometrically.

The set S contains the eighth roots of unity given by $\left\{ \operatorname{cis}\left(\frac{n\pi}{4}\right), \ n \in \mathbb{N}, \ 0 \leqslant n \leqslant 7 \right\}$.

- (i) Show that $\{S, \times\}$ is a group where \times denotes multiplication of complex numbers.
- (ii) Giving a reason, state whether or not $\{S, \times\}$ is cyclic.

The binary operation multiplication modulo 9, denoted by \times_9 , is defined on the set $S = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

a. Copy and complete the following Cayley table.

×9	1	2	3	4	5	6	7	8
1	1	2	3	4	5	6	7	8
2	2	4	6	8	1	3	5	7
3								
4	4	8	3	7	2	6	1	5
5								
6	6	3	0	6	3	0	6	3
7								
8	8	7	6	5	4	3	2	1

- b. Show that $\{S, \times_9\}$ is not a group.
- c. Prove that a group $\{G, imes_9\}$ can be formed by removing two elements from the set S .
- d. (i) Find the order of all the elements of G.
 - (ii) Write down all the proper subgroups of $\{G, \times_9\}$.
 - (iii) Determine the coset containing the element 5 for each of the subgroups in part (ii).

[3]

[6]

[3]

[1]

[5]

[8]

- e. Solve the equation $4 \times_9 x \times_9 x = 1$.
- a. The relation R is defined for $x,y\in\mathbb{Z}^+$ such that xRy if and only if $3^x\equiv 3^y(\mod 10)$.
 - (i) Show that R is an equivalence relation.
 - (ii) Identify all the equivalence classes.

b. Let S denote the set $\left\{x\left|x=a+b\sqrt{3},a,b\in\mathbb{Q},a^2+b^2
eq 0
ight\}$.

- (i) Prove that S is a group under multiplication.
- (ii) Give a reason why S would not be a group if the conditions on a, b were changed to $a, b \in \mathbb{R}, a^2 + b^2 \neq 0$.

[11]

[15]